Module \leftrightarrow Comodule Duality (over finite-dim' algebra/coalgebra)

\[V^* \xrightarrow{\Delta_{V^*}} V^* \otimes H^* \xrightarrow{\mu} V^* \]

\[(V \otimes H)^* \xrightarrow{\Delta_{(V \otimes H)^*}} (V^* \otimes H^*) \]

\[\bar{\lambda}(a \otimes b) = a(a) \cdot \beta(b) \]

\(\bar{\lambda} \) is an isomorphism of vector spaces

\[\Leftrightarrow \text{H or V is finite-dim'}. \]

\[\begin{array}{c}
\text{H left-comodule } (V, \Delta_V) \xrightarrow{\text{H}} \text{H* right-module } (V^*, \nu^* \mu := \Delta_{V^*}^* \bar{\lambda}) \\
\text{H right-module } (V, \nu \mu) \xrightarrow{\text{H*}} \text{H* left-comodule } (V^*, \Delta_{V^*} = \bar{\lambda}^{-1} \nu^* \mu^*)
\end{array} \]
Categorical Language

Motivations:
1. Categorical description of modules over algebras provides a link between algebra and topological invariants.
2. Categorical description leads to generalization of the algebraic objects.

Algebras
- braided bialgebra
 - \(s \)
- braided Hopf algebra
 - \(\theta \)
- ribbon algebra
 - can relax to quasi

Categories
- braided category
 - dual
 - braided category with twist
 - twist
 - ribbon category
 - all are tensor categories

Topological Invariants
- "Invariant" of braids
 - \(\eta \)
 - "Invariant" of framed braids
 - invariant of tangles/links
 - framing
 - invariant of ribbons/framed links

4.6
Category: \(C = (\text{Ob}(C), \text{Hom}(C); \, s, b, o, \text{id}) \)

- \(\text{Ob}(C) \): the class of objects of \(C \)
- \(\text{Hom}(C) \): the class of morphisms (between objects) of \(C \)

4 maps:
- Source: \(s: \text{Hom}(C) \rightarrow \text{Ob}(C) \)
- Target: \(b: \text{Hom}(C) \rightarrow \text{Ob}(C) \)
- Composition: \(o: \text{Hom}(C) \times \text{Ob}(C) \rightarrow \text{Hom}(C) \)
- Identity: \(\text{id}: \text{Ob}(C) \rightarrow \text{Hom}(C) \)

\(\text{Hom}(C) \times \text{Ob}(C) \rightarrow \text{Hom}(C) \)

- \(s \) is a surjective homomorphism
- \(b \) is a surjective homomorphism

Composition is associative

\(s(f \circ g) = s(f) \cdot s(g) \)

\(\text{id}(f) = f \)

For \(f \in \text{Hom}(C) \), let \(V := s(f) \), \(W := b(f) \).

Then we also write \(f: V \rightarrow W \).

Functor (between categories): \(F: C \rightarrow C' \)

- \(F: \text{Ob}(C) \rightarrow \text{Ob}(C') \)
- \(\text{Hom}(C) \rightarrow \text{Hom}(C') \)

\(\text{Isomorphism} \) is a family of morphisms in \(C' \) indexed by objects of \(C \)

\(\text{Iso}(C) \)

Natural Transformation (between functors): \(\eta: F \rightarrow G \) (where \(F, G: C \rightarrow C' \))

\(\text{Isomorphism} \) of objects \(\eta: \text{Ob}(C) \rightarrow \text{Hom}(C') \)

\(\text{Isomorphism} \) of objects

\(\eta: \text{Ob}(C) \rightarrow \text{Hom}(C') \)

\(\text{Isomorphism} \) of objects
Tensor Category \((C, \otimes, I, a, l, r)\)

\[C = (\text{Obj}(C), \text{Hom}(C); s, b, \circ, \text{id}) \] a category

\(\otimes\) a functor from \(C \times C \to C\)

More explicitly written out:

\((V, W) \in \text{Obj}(C) \times \text{Obj}(C) \mapsto V \otimes W \in \text{Obj}(C)\)

\((f, g) \in \text{Hom}(C) \times \text{Hom}(C) \mapsto f \circ g \in \text{Hom}(C)\)

\[S(f \circ g) = S(f) \otimes S(g) \]

\[b(f \circ g) = b(f) \otimes b(g) \]

\[(f' \circ g') \circ (f \circ g) = (f' \circ f) \otimes (g' \circ g) \]

\[\text{id}_{V \otimes W} = \text{id}_V \otimes \text{id}_W \]

Unit \(I \in \text{Obj}(C)\) is a special object of \(C\) (see \(l\) and \(r\))

Associative Constraint

\[a_{V, W, X} : (V \otimes W) \otimes X \to V \otimes (W \otimes X) \]

Left Constraint

\[l_V : I \otimes V \cong V \]

\[l_V \circ \text{id}_{I \otimes f} = f \]

Right Constraint

\[r_V : V \otimes I \cong V \]

\[r_V \circ \text{id}_V \otimes f = f \]

Pentagon Axiom

Triangle Axiom